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Abstract. Payment Channel Network (PCN) is a widely recognized and
effective off-chain solution used to reduce on-chain operational costs.
PCN is designed to address the scalability challenge and throughput
issues in permissionless blockchains. Though transaction throughput is
improved, many issues remain, like no flexibility, channel exhaustion,
poor sustainability, etc. A separate deposit is required for each payment
channel between two users, which locks a substantial amount of coins for
a long period of time. Therefore, the flexibility to move these locked coins
across channels is impossible through off-chain. Moreover, the channels
get exhausted due to unbalanced (unidirectional) transfer. This causes
the channel to become unsustainable (dead) until the PCN is rebalanced.
This work presents a novel payment protocol called Flexible Payment
Channel Networks (FlexiPCN), which allows users to deposit coins per
user rather than per channel. So, users can move coins flexibly from one
channel to another without the help of the blockchain or setting the cycle
off-chain. FlexiPCN has been proven to be secure under the Universal
Composability framework.
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1 Introduction

In the past decade, blockchain technology has rapidly developed, making it
possible to conduct secure transactions in a distributed and trustless environ-
ment [17, 24]. It supports complex transaction logic using smart contracts [22],
which are a few lines of code that run on the blockchain [24]. It is a robust
technology because of its consensus mechanism (like PoW1), which allows all
peers to have a consistent view of transactions [17]. However, its wide adoption
is limited due to scalability issues (low transaction throughput, high transaction
fees, and high latency) [3,19]. For example, Bitcoin [17] executes 5-7 transactions
per second (TPS) and takes approximately 60 minutes to finalize a transaction.
Similarly, Ethereum [24] executes 15-20 TPS and takes approximately 6 minutes
to finalize a transaction. However, traditional payment systems like Visa pro-
cess about 47, 000 TPS2. To solve the scalability issue, a novel off-chain (layer 2)

1Adam Back. "HashCash: A popular PoW system". First announced in March 1997.
2Stress Test Prepares VisaNet for the Most Wonderful Time of the Year.

https://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-
the-most-wonderful-time-of-the-year/index.html
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mechanism known as payment channels has been introduced [19]. Payment chan-
nel enables two users to deposit and lock funds in the blockchain, as well as make
payments without broadcasting or recording transactions on the blockchain. Off-
chain payments are processed and confirmed instantly since they only need the
consent of channel users instead of all peers on the blockchain. If any dispute
arises between the channel users, it is resolved through the blockchain. Payment
channels are extended to the payment channel network (PCN), allowing users
without a direct payment channel to perform multi-hop payments without cre-
ating a new payment channel. For example, the Lightning Network (LN) [19]
and Raiden Network (RN) [1] are payment channel networks deployed on top of
Bitcoin and Ethereum, respectively. For more information about PCN, see [4,6],
and related security and privacy issues [7, 8, 15,18,21].

Even though PCN has better scalability, it still has many problems. In PCNs,
users must deposit separately for each channel [14], and significant amounts of
coins are locked up in advance. Payment flows over a channel are not equal in
both directions, so funds accumulate gradually in one direction. Consequently,
over time, the balance in one direction of channels gradually becomes exhausted
because of imbalanced channel transfers [20]. In such a case, the following issues
may arise:

1. Any further payments are not processed because there are insufficient funds
in the required channel.

2. It must either be revoked from the blockchain or refunded by closing the
payment channel and then reopening it. These are on-chain operations, which
are time-consuming and costly.

3. Whenever a channel is exhausted, owners lose the opportunity to receive
off-chain payments as relay fees.

4. PCN payment routing becomes more difficult because the user must find a
payment path with enough capacity. Also, the success rate of probing may
decrease.

Therefore, channel exhaustion is an important issue in PCN.
There are several existing works that address this issue. The trivial approach

is to refund the channel by closing and reopening the channel, which requires two
on-chain transactions that are costly and time-consuming. LOOP3 reduces the
refund costs to one on-chain transaction. Refunding still needs to interact with
the blockchain. Another approach is Revive [10], where channels are refunded by
reallocating deposits from adjacent channels, known as “rebalancing”. The entire
process is off-chain, so rebalancing is cost-free for multiple times, and the under-
lying blockchain is relieved of the transaction load. The rebalancing operation
works well in PCN; provided i) when both channel users who wish to rebalance
and the direction of desired coin flows can form directed cycles; ii) a fair leader
is required to collect users’ rebalancing demands, identify the directed cycles,
and generate transactions for cycles; and iii) the cycle users should cooperate.
Finally, a minimum rebalancing amount can be achieved among the cycle users.

3https://lightning.engineering/loop/

https://lightning.engineering/loop/
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Because of this, it suffers from low feasibility for large-scale applications, such as
LN [19]. PnP [11] is another solution that relies on carefully planning the initial
balance on each channel to reduce the chance of channel exhaustion. It delays the
occurrence of channel exhaustion by guaranteeing a good probability of success
for off-chain transactions. It is very difficult to estimate node-to-node payment
requirement correctly, a prior. Since PCN is trustless by nature, malicious nodes
may compromise the balance planning service. PnP [11] cannot recover nearly
exhausted channels. CYCLE [9] is an asynchronous rebalancing approach for
sustainable PCN that allows the channels to rebalance during off-chain payment
execution. It consistently balances PCN channels and prevents channel freezing
while ensuring privacy and security of users. Shaduf [5], is a payment channel
rebalancing scheme that doesn’t require any cycles. It allows users to shift coins
off-chain, several times after an on-chain binding operation is performed. The
binding process is an on-chain operation, so it becomes time-consuming and ex-
pensive. Thus, channel exhaustion issue in PCN has not yet been fully resolved
by the off-chain method. It is also not flexible because funds are locked into the
blockchain for a specific channel.

This work introduces a flexible payment channel network called FlexiPCN,
a purely off-chain based rebalancing technique, which allows users to freely al-
locate and share funds across all of their payment channels. It keeps funds per
user rather than per channel, facilitate users to use funds more flexibly and im-
proves payment success rates. Therefore, channel exhaustion only occurs when
the user has exhausted all its funds or if the payment amount exceeds their
current balance.

The rest of this paper is structured as follows. Section 2 explains the back-
ground concept. System model and formal model is described in Section 3, and
the proposed FlexiPCN method is described in Section 4. Security analysis is
presented in Section 5. Section 6 discusses the conclusion and future scope of
the paper.

2 Background

Payment Channel Network (PCN): A payment channel enables several
payments to be made between two parties without recording each transaction to
the blockchain. A PCN is made up of peer-to-peer multi-hop payment channels.
It is still possible to conduct payments via PCN even if there is no direct channel
between two peers. It is created when two peers deposit coins into a shared
account and add double-signed transactions to a blockchain. When the channel
does not require or one party’s coins run out, coins are distributed based on its
final state, and closes the channel is recorded on the blockchain. The deposit will
be refunded to each user according to their mutually agreed channel state. A
PCN is made up of peer-to-peer multi-hop payment channels. It is still possible
to conduct payments via PCN even if there is no direct channel between two
peers. For more information about PCN, see [12,13,16].
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Off-chain Contracts: Off-chain contracts [19] are smart contracts in which
the contract logic is not executed by miners. It is carried out by all participants
involved in making the contract. It is possible to execute computationally in-
tensive operations without involving the blockchain, so long as all participants
are honest. An honest participant can prove the correct state of the contract. It
is impossible to cheat because all the participants must sign a contract. When-
ever a malicious participant broadcasts an incorrect state in the blockchain, the
counterparty can dispute it and broadcast the correct state. An example of such
contact is HTLC4, which is used in PCN.

Hashed Time-Lock Contracts (HTLC): An off-chain payment trans-
ferred from sender to receiver must be atomic. Either the payment channel
balances are entirely updated or terminated. PCN [19] accomplishes atomicity
by incorporating Hashed Time-Lock Contracts (HTLC)4. For more information
about HTLC, see [12, 13, 16, 23]. To build an HTLC contract, the receiver first
chooses a random string and then transmits the hash of the string to the sender.
The sender computes the total amount (including forwarding fees), time-lock
for all the channels on the path. Next, it locks funds and sends payment to
the subsequent user. During the locking phase, each intermediary user forwards
the payment to the next neighbor along the path by deducting time-lock and
forwarding fees from its preceding user’s payment request. During the releasing
phase, upon receiving the preimage from its right neighbor within the time-lock,
it releases the coin to the next neighbor and reveals the preimage to its previous
neighbor. Any disagreement would be handled through blockchain. For more
information about HTLC, see [13,16].

Table 1: Notations
Notation Description Notation Description

G := (V,E, Ω) Payment channel network ωi User ui’s collaterals or sum of neighboring channel’s collateral
c〈ui,uj〉 Channel identifier v Actual amount sender u0 wants to transfer to receiver un

B Blockchain Υij Collateral or available balance in channel c〈ui,uj〉 (ui → uj)

G Elliptic curve base point c〈ui,uj〉 Payment channel identifier (between user ui and uj)
P Payment path tij Expiration time of the transaction corresponding to user ui

u0 & un Sender & Receiver fij Payment relay fee of channel c〈ui,uj〉

{ui}i∈[1,n−1] Intermediate users ski & pki Secret key of user ui & Public key of user ui

A Attacker AL & CL Active channel list & Closing channel list
F Ideal functionality PK, R, & S Aggregated public key, partial nonce, & signature
{ij Channel capacity B[ui] On-chain balance of the user ui

T Coin Allocation Table νij The amount required to shift for fulfilling the payment request
Ti Transaction log of user ui σij Signature signed by the user ui and send its neighbor uj

4https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts

https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
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3 System and Formal Model

3.1 System Model

We model FlexiPCN as a bi-directed and weighted graph G := (V,E, Ω),
where V denotes the set of blockchain users (nodes) with a weight function w,
w : V × V → R+ denotes the collateral between users, E ⊆ V × V denotes
the set of active payment channels between two user’s wallets, and ωu ∈ Ω
is the collateral of user u. Each user uiinV has a collateral of ωi =

∑k
j=1 Υij ,

where Υij represents the collateral balance of ui with uj . An off-chain payment is
denoted as Payment(u0, un, v01, t01,P), where u0 is the sender, un is the receiver,
v01 = v+

∑n−1
i=1 f〈i,i+1〉 is the total payment amount including relaying fees, and

t01 is the time period within which the payment must be completed. f〈i,i+1〉
represents the relay fee that an intermediate user ui ∈ V charges for relaying a
payment from ui to ui+1. A payment path P between u0 and un is denoted as
{u0 → u1 → · · · → un}. For readability, we present the most frequently used
notations in Table 1.

3.2 Adversary Model

We assume that each pair of users uses a secure and authenticated channel
to exchange payment information. Neither the sender nor the receiver have a
secure channel with the intermediate users, but both have a secure channel with
each other. Intermediary nodes are only aware of their previous and next neigh-
bors. The sender, however, has detailed information about the network topology,
including the identity of the user, lock-time, relay fees of the intermediate nodes,
channel identifier, and node capacity but not the channel capacity, etc. There
must be at least one payment path between the sender and receiver, and the
associated payment channels must meet the collateral requirements (either from
one channel or by moving coins from other channels) to process off-chain trans-
actions. Each neighboring user has a pre-established payment channel with zero
collateral.

Security threats occur either from internal or from external sources. So, our
adversary model considers both inside and outside PCN adversaries. We con-
sider both honest-but-curious and malicious models. Assume that A is a com-
putationally efficient adversary who corrupts one or more PCN users. Once A
has corrupted some users, it gains access to their internal states and informa-
tion flows, as well as complete control over them. Compromised users can work
together to challenge PCN security, and steals off-chain payment relay fees from
honest intermediaries.A can impersonate any corrupted user and sends arbitrary
messages. Assume that intermediate users are honest-but-curious and that they
are interested in analyzing the sender’s privacy and communication patterns or
behaviors. The target of the adversary is to exhaust a payment channel, so that
it can no longer participate in the payment execution.
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3.3 Ideal World Model

The security model of FlexiPCN follows [5, 12, 16, 23] which is based on
the universal composable (UC) framework [2]. The simulator S is a probabilis-
tic polynomial-time algorithm that simulates the off-chain FlexiPCN protocol
in a hybrid world model. The output in S must be indistinguishable in com-
munication with the ideal functionality F , even if some users are corrupt. The
environment Z represents all events that occur outside the protocol execution,
which would influence the protocol execution. It gives the input to the user
and obtains the output from the user. Z could compromise certain users for
obtaining access to their internal states and to manage their execution. But,
Z does not interact with S, while getting executed by corrupted users. Since
honest users interact through secure and authorized channels, the adversary A
cannot retrieve any confidential information. The ideal functionality FFlexiPCN

uses FECDSA (used for digital signatures), FB (used to maintain blockchain and
its operations), FC (used for maintaining contract instances), and Fanon (used
for anonymous communication) as subroutines, i.e., our protocol is specified in
the (FECDSA,FB,FC ,Fanon)-hybrid model. Internally, FFlexiPCN maintains two lists,
namely an active channel list AL and a closed channel list CL. It also maintains
a table called transaction log or state T .

𝒖𝟑𝒖𝟏 𝒖𝟐𝒖𝟎 𝒖𝟒
9

8

7

10

4

10

7

9

9 15 14 17 20
CoinDeposit:

CoinAllocation:

Payment:

2. ETLC(𝑢0,𝑢1,𝛽01,𝛼01,𝑡01,5.3) 3. ETLC(𝑢1,𝑢2,𝛽12,𝛼12,𝑡12,5.2) 5. ETLC(𝑢2,𝑢3,𝛽23,𝛼23,𝑡23,5.1) 6. ETLC(𝑢3,𝑢4,𝛽34,𝛼34,𝑡34,5.0)

-2

+2

MAPPCN Payment Protocol

1. (r , P)
4. CoinShift(𝒄𝟐𝟏,𝒄𝟐𝟑, 𝟐)

7. (Γ4,P)8. (Γ3,P)9. (Γ2,P)10. (Γ1,P)

Υ01 Υ10

3.7 8.0

Υ01 Υ10 Υ12 Υ21

3.7 8.0 1.8 8.0

Υ12 Υ21 Υ23 Υ32

1.8 8.0 0.9 10

Υ23 Υ32 Υ34 Υ43

0.9 10 2.0 9.0

Υ34 Υ43

2.0 9.0

Updated 
Balance

CoinSettlement:

CoinSettle(Υ12=1.8,Υ21=8.0)CoinSettle(Υ01=3.7,Υ10=8.0) CoinSettle(Υ23=0.9,Υ32=10) CoinSettle(Υ34=2.0,Υ43=9.0)

Fig. 1: FlexiPCN: Flexible Payment Channel Network Overview

4 The Proposed Protocol: FlexiPCN

4.1 Overview

We provide an overview of payment execution in FlexiPCN. Consider the
simple PCN structure shown in Fig. 1, in which payment channels are established
between users with no collateral. In order to participate in off-chain payment ex-
ecution, each user deposits a certain amount of coins to the blockchain B, such
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as 9, 15, 14, 17, and 20 coins deposited by u0, u1, u2, u3, and u4, respectively.
Then, each user distributes the deposited coins to their corresponding payment
channels, such as u0 allocates 9 coins to channel c〈u0,u1〉; u1 allocates 8 and 7
coins to channel c〈u1,u0〉 and c〈u1,u2〉, respectively; u2 allocates 10 and 4 coins to
channel c〈u2,u1〉 and c〈u2,u3〉, respectively; u3 allocates 10 and 7 coins to channel
c〈u3,u2〉 and c〈u3,u4〉, respectively; u4 allocates 9 coins to channel c〈u4,u3〉. Note
that users are aware of all other users’ node balances, but are only aware of the
channel balances of their previous and next users. Suppose u0 is the sender who
wishes to send 5 coins to the receiver u4. For that, u0 chooses a payment path
P : {u0 → u1 → u2 → u3 → u4}. For the payment operation, we use the existing
protocol MAPPCN [23] to ensure user privacy and anonymity. u0 initiates the
payment operation by sending 〈r, P 〉 to u4 over a secure channel, where r is a ran-
dom number and P is the base point of the Elliptic curve Ep. Then, u0 establishes
an ETLC(u0, u1, β01, α01, t01, v01)

5 contract with u1, where β01 and α01 are the
secret parameters, t01 is the expiration time period to lock v01 amount of coins
(v01 = 5.3 is the sum of payment amount v = 5 and relay fees of intermediate
users f =

∑3
i=1 f〈i,i+1〉 = 0.3). Later, each intermediate user ui generates `i ran-

domly, computes secret parameters β〈i,i+1〉 = `i·β〈i−1,i〉 and α〈i,i+1〉 = `i·α〈i−1,i〉
to establish an ETLC(ui, ui+1, β〈i,i+1〉, α〈i,i+1〉, t〈i,i+1〉, v〈i,i+1〉) contract. When
u2 receives the ETLC request from u1, it is unable to forward it to u3 due to insuffi-
cient balance at channel c23 = 4, which requires at least 5.1 coins after deducting
the relay fee. Therefore, u2 performs a coin shifting operation to shift 2 coins from
channel c21 to channel c23 in order to complete the payment execution. Then,
u2 establishes an ETLC(u2, u3, β23, α23, t23, v23) contract with u3, which continues
until u4 is reached. Therefore, upon receiving ETLC(u3, u4, β34, α34, t34, v34) re-
quest from u3, u4 validates r · β34 ·P

?
= α34, computes Γ34 = r · β34, and returns

〈Γ4, P 〉 to u3 in order to satisfy the ETLC contract condition. After receiving
〈Γi+1, P 〉 from ui+1, each intermediate user ui validate Γi+1 ·P

?
= α〈i,i+1〉. Upon

satisfying the contract condition, ui releases the locked coins to ui+1 and returns
Γi = `−1i · Γi+1 to ui−1 in order to satisfy the ETLC contract condition. As a re-
sult, each user on the payment path receives their committed coins. When a user
wants to settle coins, it must first finish all pending payments and share the lat-
est state with its neighbors. Then it invokes coin settlement on the blockchain
B by submitting the latest state with its signature. The user account is then
updated by B. If a neighbor raises a dispute, the neighbor user sends the most
recent state to B, and B is solved as a dispute resolution.

4.2 FlexiPCN Operations:

FlexiPCN consists of seven primary operations: 1) open channel, 2) coin
deposit, 3) coin allocation, 4) payment, 5) coin shift, 6) coin settlement, and 7)
close channel.

5 ETLC: Elliptic Curve based Time-Lock Contract [23]
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1. OpenChannel : This is an on-chain (blockchain) operation that is triggered
by the user ui in order to establish a payment channel with the user uj , and
it returns the channel identifier c〈ui,uj〉.

2. CoinDeposit : This is an on-chain operation initiated by user ui, which
deposits the amount of coins ωi with signature σi in order to participate in
the payment execution and returns > as confirmation.

3. CoinAllocation : This is an off-chain operation initiated by the user ui that
distributes coins equally to each active adjacent channel user uj so that it
can participate in payment execution. Each adjacent user returns σ

′

ji as their
agreement confirmation.

4. Payment : This is an off-chain operation initiated by the sender u0 who wants
to transfer some coins (v) to un via some intermediate users. This is accom-
plished by using the ETLC5 contract, which updates the channel balances
atomically.

5. CoinShift : This is an off-chain operation triggered by an intermediate user
ui between two channels that do not have enough channel balance to send the
ETLC payment request to the next user uj . In order to fulfill the payment
request, ui moves the required amount of coins ν from its adjacent channel(s)
to another.

6. CoinSettlement : This is an on-chain operation initiated by any user ui, by
sending the recently updated state Ψ with its agreement σi for coin settle-
ment after all pending payment requests are completed.

7. CloseChannel : This is an on-chain operation that can be initiated by any
channel user to close the payment channel and return the off-chain balance
to the blockchain.
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Fig. 2: Coin Deposit and Allocation Operation
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Algorithm 1: FlexiPCN Protocol Operations

OpenChannel(ui, uj, Υij, Υji, fij, tij) :

1: if
(
{ui, uj} ∈ B and c〈ui,uj〉 /∈ AL

)
then

2: create: channel identifier c〈ui,uj〉
3: Υij = 0, Υji = 0, {ij = 0

4: write: open(c〈ui,uj〉, {ij, fij, tij) to
B

5: store: (c〈ui,uj〉, Υij, Υji, {ij, fij, tij)
in AL

6: send: c〈ui,uj〉 to both ui and uj

7: else
8: Abort

9: end if
CoinDeposits(ui, {uj}, ωi, σi) :

1: if
(
ui ∈ B and ωi ≤ B[ui]

)
then

2: for all neighbor uj do
3: if

(
c〈ui,uj〉 ∈ AL

)
then

4: add: c〈ui,uj〉 in T
5: else
6: Abort

7: end if
8: write: CoinDeposit(ui, {uj},

ωi, σi) to B
9: send: > to ui

10: end for
11: else
12: Abort

13: end if
CoinAllocation(ui, {uj}, ωi) :

1: for all neighbor uj do
2: if (c〈ui,uj〉 ∈ AL and c〈ui,uj〉 ∈ T )

then
3: update: (c〈ui,uj〉, Υ

′
ij =

ωi

|{uj}| ,

Υji, {
′
ij = Υ

′
ij + Υji, 〈σ

′
ij,−〉) in T

4: send: (c〈ui,uj〉,
ωi

|{uj}| , σ
′
ij) to uj

5: receive: σ
′
ji from uj

6: update: (c〈ui,uj〉, ·, ·, ·, 〈·, σ
′
ji〉) in

T
7: else
8: Abort

9: end if
10: send: > to ui

11: end for
Payment: Refer MAPPCN [23].

CoinShift({c〈ui,uk〉}, c〈ui,uj〉, νik) :
1: for each channel c〈ui,uk〉 do
2: if (c〈ui,uk〉 ∈ AL) then
3: send: (c〈ui,uk〉, c〈ui,uj〉, νik) to uk

4: receive: (Υ
′′
ik, C

′′
ik, σ

′′
ki) from uk

5: update: (c〈ui,uk〉, Υ
′′
ik, ·, C

′′
ik, 〈σ

′′
ik,

σ
′′
ki〉) in T

6: update: (c〈ui,uj〉, Υ
′′
ij, ·, C

′′
ij, 〈σ

′′
ij,

−〉) in T
7: send: (c〈ui,uk〉, c〈ui,uj〉, Υ

′′
ij, ·, C

′′
ij,

〈σ
′′
ij , σ

′′
ik, σ

′′
ki〉) to uj

8: receive: σ
′′
ji from uj

9: update: (c〈ui,uj〉, ·, ·, ·, 〈·, σ
′′
ji〉) in

T
10: send: 〈σ

′′
ik, σ

′′
ij, σ

′′
ji〉 to uj

11: end if
12: end for
CoinSettlement(ui, {uj}, Ψ, σi) :
1: send: (c〈ui,uj〉, Ψ) to uj

2: write: CoinSettle(ui, Ψ, σi) to B
3: send: > to ui

CloseChannel(c〈ui,uj〉, ) :

1: if (c〈ui,uj〉, {ij, fij, tij) ∈ B and
(c〈ui,uj〉, Υij, Υji, {ij, fij, t

′
ij) ∈ AL

then
2: if (c〈ui,uj〉 ∈ CL or t

′
ij > |B|) then

3: Abort

4: else
5: remove: (c〈ui,uj〉, Υij, Υji, {ij,

fij , t
′
ij) from AL

6: write: close(c〈ui,uj〉, {ij, fij,
t
′
ij) to B

7: store: c〈ui,uj〉 in CL
8: send: (c〈ui,uj〉,>) to both ui

and uj
9: end if
10: else
11: Abort

12: end if
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4.3 FlexiPCN Operational Details:

The open channel and close channel operations are the same as the existing
payment protocols like MAPPCN [23], but there is no initial channel balance.
However, for the payment operation, we use the existing mechanism of MAPPCN
[23] to ensure the anonymity and privacy of the user. Algorithm 1 depicts all the
operations of the FlexiPCN protocol. The remaining operations are described in
detail as follows:
CoinDeposit(ui, {uj}, ωi, σi) : As illustrated in Fig. 2, user ui wishes to deposit
some coins onto blockchain B, it first invokes CoinDeposit(ui, {uj}, ωi, σi) and
passes the parameters: active neighboring set {uj}, amount to be deposited ωi,
and signature σi. After receiving CoinDeposit request, the blockchain B checks
ui ∈ B, c〈ui,uj〉 ∈ AL, and ωi ≤ B[ui]. If all of these conditions are met, B updates
the account balance of ui B[ui] = B[ui]− ωi and sends > to ui as confirmation.
Then, ui adds the channel c〈ui,uj〉 into the transaction state table T .

CoinAllocation(ui, {uj}, ωi, σ
′

ij) : As illustrated in Fig. 2, the user ui allocates
collateral to each adjacent channel c〈ui,uj〉 by using the coin allocation policy is

ωi

|{uj}| along with signature σ
′

ij for each uj . After that, each neighbor uj confirms

their agreement by sending their signature σ
′

ji to ui. Each user maintains a
transaction log (state) T table.

𝒖𝒋𝒖𝒌
𝒖𝒊

CoinShift(𝑐 𝑢𝑖,𝑢𝑘
,𝑐 𝑢𝑖,𝑢𝑗

,𝑣𝑖𝑘)1

Channel Balance1 Balance2 Capacity Signature

𝑐 𝑢𝑖,𝑢𝑘
𝛶𝑖𝑘
′ Υ𝑘𝑖 ℂ𝑖𝑘

′ 𝜎𝑖𝑘
′ ,𝜎𝑘𝑖

′

𝑐 𝑢𝑖,𝑢𝑘
𝛶𝑖𝑘
′′ 𝛶𝑘𝑖 ℂ𝑖𝑘

′′ −,𝜎𝑘𝑖
′′

𝑐 𝑢𝑖,𝑢𝑘
𝛶𝑘𝑖
′ 𝛶𝑖𝑘 ℂ𝑖𝑘

′ 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

𝑐 𝑢𝑖,𝑢𝑗 − − − 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

2

(𝑐 𝑢𝑖,𝑢𝑘
,𝛶𝑖𝑘

′′,ℂ𝑖𝑘
′′ ,𝜎𝑘𝑖

′′)3

Channel Balance1 Balance2 Capacity Signature

𝑐 𝑢𝑖,𝑢𝑗
𝛶𝑖𝑗
′ Υ𝑗𝑖 ℂ𝑖𝑗

′ 𝜎𝑖𝑗
′ ,𝜎𝑗𝑖

′

𝑐 𝑢𝑖,𝑢𝑗
𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

𝑐 𝑢𝑖,𝑢𝑘 − − − 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

Channel Balance1 Balance2 Capacity Signature

𝑐 𝑢𝑖,𝑢𝑘
𝛶𝑖𝑘
′ Υ𝑘𝑖 ℂ𝑖𝑘

′ 𝜎𝑖𝑘
′ ,𝜎𝑘𝑖

′

𝑐 𝑢𝑖,𝑢𝑗
𝛶𝑖𝑗
′ Υ𝑗𝑖 ℂ𝑖𝑗

′ 𝜎𝑖𝑗
′ ,𝜎𝑗𝑖

′

𝑐 𝑢𝑖,𝑢𝑘
𝛶𝑖𝑘
′′ 𝛶𝑘𝑖 ℂ𝑖𝑘

′′ 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

𝑐 𝑢𝑖,𝑢𝑗
𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,−

𝑐 𝑢𝑖,𝑢𝑗
𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

4

(𝑐 𝑢𝑖,𝑢𝑘
,𝑐 𝑢𝑖,𝑢𝑗

,𝛶𝑖𝑗
′′,ℂ𝑖𝑗

′′ , 𝜎𝑖𝑗
′′,𝜎𝑖𝑘

′′ ,𝜎𝑘𝑖
′′ )5

6

(𝑐 𝑢𝑖,𝑢𝑗
,𝜎𝑗𝑖

′′)7(𝑐 𝑢𝑖,𝑢𝑗
, 𝜎𝑖𝑘

′′ ,𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′ )9

8
10

Coin Shift:

Fig. 3: Coin Shift Operation

CoinShift(c〈ui,uk〉, c〈ui,uj〉, νik) : As illustrated in Fig. 3, the user ui moves νik
amount of coins from one (or more) neighboring channel(s) to c〈ui,uj〉 in order
to fulfill the off-chain payment request routed through it. To do this, ui sends
a CoinShift(c〈ui,uk〉, c〈ui,uj〉, νik) request to its neighbor uk (assuming channel
c〈ui,uk〉 has more collateral than νik according to T maintained by ui). After
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uk updates the channel balance Υik = Υik − νik and channel capacity {ik =
Υki + (Υik − νik), uk sends signature σ

′′

ki to ui. Then, ui updates the channel
balances Υik = Υik − νik and Υij = Υij + νik, as well as channel capacity {ik =

Υki + (Υik − νik) and {ij = Υji + (Υij + νik), and stores σ
′′

ki in T . After that,
ui sends signatures 〈σ′′

ij , σ
′′

ik, σ
′′

ki〉 to uj . Then, uj updates the channel balance
Υij = Υij + νik and channel capacity {ij = Υji + (Υij + νik), stores signatures,
and sends σ

′′

ji to ui. Next, ui stores σ
′′

ji and sends 〈σ′′

ik, σ
′′

ij , σ
′′

ji〉 to uk. Finally,
all users ui, uj , and uk have the same state.

𝒖𝒋𝒖𝒌 𝒖𝒊

CoinSettlement(𝑐 𝑢𝑖,𝑢𝑘 ,Ψ𝑖𝑘,Ψ𝑖𝑗)1

CoinSettlement(𝑢𝑖,Ψ𝑖𝑘,Ψ𝑖𝑗,𝜎𝑖)3 Confirm(⊤)4

Coin 
Settlement:

CoinAllocation(𝑐 𝑢𝑖,𝑢𝑗
,Ψ𝑖𝑘,Ψ𝑖𝑗)1

State Channel Balance1 Balance2 Capacity Signature

Ψ𝑖𝑗 𝑐 𝑢𝑖,𝑢𝑗 𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

𝑐 𝑢𝑖,𝑢𝑘 − − − 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

Ψ𝑖𝑘 𝑐 𝑢𝑖,𝑢𝑘 𝛶𝑖𝑘
′′ 𝛶𝑘𝑖 ℂ𝑖𝑘

′′ 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

State Channel Balance1 Balance2 Capacity Signature

Ψ𝑖𝑘 𝑐 𝑢𝑖,𝑢𝑘 𝛶𝑖𝑘
′′ 𝛶𝑘𝑖 ℂ𝑖𝑘

′′ 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

Ψ𝑖𝑗 𝑐 𝑢𝑖,𝑢𝑗 𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

State Channel Balance1 Balance2 Capacity Signature

Ψ𝑖𝑘 𝑐 𝑢𝑖,𝑢𝑘 𝛶𝑘𝑖
′ 𝛶𝑖𝑘 ℂ𝑖𝑘

′ 𝜎𝑖𝑘
′′ ,𝜎𝑘𝑖

′′

𝑐 𝑢𝑖,𝑢𝑗 − − − 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′

Ψ𝑖𝑗 𝑐 𝑢𝑖,𝑢𝑗 𝛶𝑖𝑗
′′ 𝛶𝑗𝑖 ℂ𝑖𝑗

′′ 𝜎𝑖𝑗
′′,𝜎𝑗𝑖

′′2 2

𝓑

Fig. 4: Coin Settlement Operation

CoinSettlement(ui, {uj}, Ψ, σi) : As illustrated in Fig. 4, the user ui informs
each neighbor uj of their most recent updated state 〈c〈ui,uj〉, Ψij〉 before initi-
ating the coin settlement operation. Then, ui writes CoinSettle(ui, {uj}, Ψ, σi)
on the blockchain B. B validates the Ψ and updates the on-chain balances. If
this operation is successful, B returns success with > to ui; otherwise, it re-
turns fail with ⊥. If any of the neighbors uj , does not agree with the updated
balances, the blockchain can be used to resolve the conflict by providing the
transaction state Ψij .

5 Security Analysis

Theorem 1. FlexiPCN protocol UC-realizes the ideal functionality FFlexiPCN :
(FECDSA,FB,FC ,Fanon)-hybrid model, provided that the digital signature scheme
is existentially unforgeable.

Proof. The OpenChannel and CloseChannel operations are discussed in [5], and
Payment operation is also discussed in [23]; so here we are focusing on the remain-
ing operations: CoinDeposit, CoinAllocation, CoinShift, and CoinSettlement.
This simulator S uses a secure cryptographic primitive called Elliptic Curve Dig-
ital Signature Algorithm (ECDSA), which is assumed to be secure.
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CoinDeposit

ui is honest:When ui sends (CoinDeposit, ui, {uj}, ωi) ↪→ F , generate sig-
nature σi of user ui on message ({uj}, ωi) where {uj} is the set of active adjacent
channel user, ωi is the amount to be deposited or locked in the contract func-
tionality C, and sends (CoinDeposit, ui, {uj}, ωi, σi) to C on behalf of user ui.
C returns (deposit− confirm) to F , and F returns > to ui.

ui is corrupt: When ui sends (CoinDeposit, ui, {uj}, ωi, σi) ↪→ C, C sends
(CoinDeposit, ui, {uj}, ωi, σi) ↪→ F on behalf of ui. F returns ⊥ to ui.

CoinAllocation :

ui is honest: When ui sends (CoinAllocation, ui, {uj}, ωi) ↪→ F , generate
signature σi′ of ui on (ui, {uj}, ωi), sends (CoinAllocation, c〈ui,uj〉,

ωi

|{uj}| , σij
′)

to each adjacent user uj ∈ {uj} on behalf of ui.

For each uj ∈ {uj}:

– If uj is corrupt: It sends (confirm−allocate, c〈ui,uj〉, σ
′

ji) to ui where σ
′

ji is
the signature of uj on (c〈ui,uj〉,

ωi

|{uj}| ), send (CoinAllocation, c〈ui,uj〉,
ωi

|{uj}| )

↪→ F on behalf of uj .
– If uj is honest: It sends (confirm− allocate, c〈ui,uj〉) ↪→ F , generate signa-

ture σ
′

ji of uj on (c〈ui,uj〉,
ωi

|{uj}| ), and sent it to ui on behalf of uj .

ui is corrupt: When ui sends (CoinAllocation, c〈ui,uj〉,
ωi

|{uj}| , σ
′

ij) to uj ,
where uj ∈ {uj} and uj is honest, send (CoinAllocation, c〈ui,uj〉,

ωi

|{uj}| ) ↪→ F
on behalf of ui and send (allocate− request, uj) to F .

For each uj ∈ {uj}:

– If uj is corrupt: It sends (confirm−allocate, c〈ui,uj〉) to F on behalf of uj .
– If uj is honest: It sends (confirm− allocate, c〈ui,uj〉) ↪→ F , generate signa-

ture of uj on (c〈ui,uj〉,
ωi

|{uj}| ) and send (CoinAllocation, c〈ui,uj〉,
ωi

|{uj}| , σ
′

ij)

to ui on behalf of ui.

CoinShift :

ui is honest: When ui sends (CoinShift, c〈ui,uk〉, c〈ui,uj〉, νik) ↪→ F , send
(CoinShift, c〈ui,uk〉, c〈ui,uj〉, νik) to uk on behalf of ui.

– If uk is honest: It generates signature σ
′′

ki on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and send
(c〈ui,uk〉, Υ

′′

ik, {
′′

ik, σ
′′

ki) ↪→ F . F sends (c〈ui,uk〉, Υ
′′

ik, {
′′

ik, σ
′′

ki) to ui on behalf of
uk. ui sends (c〈ui,uk〉, c〈ui,uj〉, Υ

′′

ij, {
′′

ij) ↪→ F . F generates signatures σ
′′

ik on
(c〈ui,uk〉, Υ

′′

ik, {
′′

ik) and σ
′′

ij on (c〈ui,uj〉, Υ
′′

ij , {
′′

ij), send (c〈ui,uk〉, c〈ui,uj〉, Υ
′′

ij, {
′′

ij,

〈σ′′

ij , σ
′′

ik, σ
′′

ki〉) to uj on behalf of ui.
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• If uj is honest: It sends (coin − shift − ok) ↪→ F , generate signature
σ

′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij), send (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk on behalf of
ui.

• If uj is corrupt: It sends signature σ
′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij) to ui, sends
(c〈ui,uj〉, 〈σ

′′

ik, σ
′′

ij, σ
′′

ji〉) to uk on behalf of ui.
– If uk is corrupt: It generates signature σ

′′

ki on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and sends
(c〈ui,uk〉, Υ

′′

ik, σ
′′

ki) to ui. ui sends (c〈ui,uk〉, c〈ui,uj〉, Υ
′′

ik, {
′′

ik, σ
′′

ki) ↪→ F , gener-
ates signatures σ

′′

ik on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and σ
′′

ij on (c〈ui,uj〉, Υ
′′

ij , {
′′

ij), send
(c〈ui,uk〉, c〈ui,uj〉, Υ

′′

ij, {
′′

ij, 〈σ
′′

ij, σ
′′

ik, σ
′′

ki〉) to uj on behalf of ui.
• If uj is honest: It sends (coin − shift − ok) ↪→ F , generate signature
σ

′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij), send (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk on behalf of
ui.

• If uj is corrupt: It sends signature σ
′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij) to ui, sends
(c〈ui,uj〉, 〈σ

′′

ik, σ
′′

ij, σ
′′

ji〉) to uk on behalf of ui.

ui is corrupt: When ui sends (CoinShift, c〈ui,uk〉, c〈ui,uj〉, νik) ↪→ uk.

– If uk is honest: It generates signature σ
′′

ki on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and send
(c〈ui,uk〉, Υ

′′

ik, {
′′

ik, σ
′′

ki) ↪→ F . F sends (c〈ui,uk〉, Υ
′′

ik, {
′′

ik, σ
′′

ki) to ui on behalf of
uk. ui generates signatures σ

′′

ik on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and σ
′′

ij on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij),
and send (c〈ui,uk〉, c〈ui,uj〉, Υ

′′

ij, {
′′

ij, 〈σ
′′

ij, σ
′′

ik, σ
′′

ki〉) to uj .
• If uj is honest: It sends (coin−shift−ok) ↪→ F . ui generate signature
σ

′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij), send (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk.
• If uj is corrupt: It generates signature σ

′′

ji on (c〈ui,uk〉, c〈ui,uj〉, Υ
′′

ij, {
′′

ij)

and sends (c〈ui,uj〉, σ
′′

ij) to ui, it sends (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk.
– If uk is corrupt: It generates signature σ

′′

ki on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik) and sends
(c〈ui,uk〉, Υ

′′

ik, {
′′

ik, σ
′′

ki) to ui. It generates signatures σ
′′

ik on (c〈ui,uk〉, Υ
′′

ik, {
′′

ik)

and σ
′′

ij on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij), and sends (c〈ui,uk〉, c〈ui,uj〉, Υ
′′

ij, {
′′

ij, 〈σ
′′

ij, σ
′′

ik, σ
′′

ki〉)
to uj .
• If uj is honest: It sends (coin − shift − ok) ↪→ F , generate signature
σ

′′

ji on (c〈ui,uj〉, Υ
′′

ij, {
′′

ij), send (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk.
• If uj is corrupt: It generates signature σ

′′

ji on (c〈ui,uk〉, c〈ui,uj〉, Υ
′′

ij, {
′′

ij)

and sends (c〈ui,uj〉, σ
′′

ij) to ui, it sends (c〈ui,uj〉, 〈σ
′′

ik, σ
′′

ij, σ
′′

ji〉) to uk.

CoinSettlement :

ui is honest: When ui sends (CoinSettlement, ui, Ψ) ↪→ F where Ψ is the
most recent updated state of the payment channels, generate signature σi of user
ui on Ψ , and sends (CoinSettlement, ui, {uj}, ωi, σi) to C on behalf of user ui.
If the pending payment requests are completed and updated channel balances,
C sends confirmation (settlement− confirm) to F , and F returns > to ui.

ui is corrupt: When ui sends (CoinSettlement, ui, Ψ, σi) ↪→ C, C sends
(CoinSettlement, ui, {uj}, Ψ, σi) ↪→ F on behalf of ui. F returns ⊥ to ui.
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6 Conclusion

In this paper, we have proposed a novel flexible payment channel network
called FlexiPCN, which rebalances the channel completely off-chain. In Flex-
iPCN, coins can be deposited per user instead of per channel, allowing users to
move coins between channels without going on-chain or setting up a cycle. We
have formalized and studied the security of the FlexiPCN protocol using the
Universal Composability (UC) framework. The implementation of FlexiPCN is
in progress, and we are looking at various applications for it.
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