
Coercion-Resistant Cast-as-Intended
Verifiability for Computationally Limited Voters

Tamara Finogina1,2 and Javier Herranz1

1 Dept. Matemàtiques, Universitat Politècnica de Catalunya
Barcelona, Spain

javier.herranz@upc.edu
2 Scytl Election Technologies, S.L.U.,

Barcelona, Spain
tamara.finogina@scytl.com

Abstract. In this work, we investigate if two essential properties in
electronic voting, coercion-resistance and cast-as-intended verifiability,
can be jointly achieved in settings where voters are (very) limited from
a computational point of view. This may be the case in elections where
voters use a voting station or webpage to cast their votes but do not have
specialized software or devices to perform complicated cryptographic op-
erations (for instance, to verify zero-knowledge proofs or to generate
one-way trapdoors).
We provide a solution where the only things voters have to do are: re-
member and compare strings of numbers, on the one hand, and press
a button at the appropriate moment, on the other hand. This button
activates the participation of an online entity, which is trusted to choose
a random nonce for each voter and to publish it only when that voter
presses the button (and not before). The most expensive part of the veri-
fication is an OR proof of knowledge, which can be done by any (powerful
enough) external verifier.

1 Introduction

Coercion resistance and cast-as-intended verifiability are two crucial but
contradictory properties of electronic voting schemes. The former aims
not to leak any information that can prevent voters from expressing their
true intent or can facilitate vote-selling. The latter tries to ensure that
a cheating voting device would not be able to modify a voter’s choices
undetectably. The contradiction is unavoidable: one property requires out-
putting as little feedback regarding the vote’s content as possible, while
the other demands proving that the voter’s intention is encrypted cor-
rectly.

In this work, we focus on this contradiction and outline the defini-
tion of coercion-resistant cast-as-intended verification in the simplest (but

maybe most realistic) case for electronic elections: a voter cannot perform
any complex computations on its own, for instance, because it does not
have any trusted computational device capable of doing sophisticated
math.

While, to our knowledge, there are no formal studies about voters’
modeling or capabilities, we believe this simplest possible case is the most
realistic assumption one can make about voters. It is true that, with less
restrictive assumptions about voters’ abilities, we perhaps can construct
more elegant and secure systems. However, one may wonder - if the voter
already has a trusted device or can do cryptographic operations in the
head, why not use it for vote-casting directly?

As was mentioned, we consider only computationally limited voters
who want to perform cast-as-intended verification while remaining safe
from possible coercion threats. However, our task is not trivial: the lack
of consensus regarding the coercer’s abilities or voters’ capabilities to
withstand coercion already makes defining coercion resistance challeng-
ing. Furthermore, the matter gets more complicated by the differences in
techniques for cast-as-intended verification.

1.1 On the Limitations of the Coercion and of Voters’
Capabilities

Coercion is an intuitively-understandable threat. While it is clear that
the goal of the coercer is to prevent free will expression, some specific
details are still blurry:
• “Can a coerced prevent a voter from voting?”
• “Can an average voter extract randomness and similar secret details

from the voting device (when it does not output them by default)?”
• “Are voters left without a coercer’s observation during the voting?”
• “Is the coercer’s goal to vote for a specific option or not?”

We can firmly agree that coercion-resistance makes sense only when
the coercer has limited observational power [7], and the voter can disobey
without facing high personal risks. Else, the voter has no choice but to
comply [26]. Also, it was proven that resisting force-abstention attacks
requires anonymous channels [13], which are incredibly hard to establish
in practice. Also, we focus only on coercion that aims to change a voter’s
vote to a specific option or candidate. We do not deal with scenarios
where the coercer wishes to delay the vote-casting process, discourage
participation, or complicate voters’ lives otherwise.

In this work, we assume that voters are computationally limited en-
tities and cannot do cryptographic operations (one-way function compu-

tations, etc.). The only capability voters have is remembering and com-
paring strings they see - an assumption similar in spirit to [19, 26]. For
simplicity, we do not restrict the length of memorized data; however, we
realize there is only so much information the voter can safely remember.
Since we consider voters computationally limited, we exclude the possi-
bility of force extraction of non-outputted information from an e-voting
system. While it is true that, in some cases, the coercer might demand
voters extract randomness used for encrypting their choice, we believe
those instructions are hard to comply with for an average non-technically
savvy voter.

Therefore, we consider the following scenario: a computationally lim-
ited (and potentially malicious) voter is coerced to vote for a specific
option but left without supervision for (some part) of the vote-casting pro-
cess. The coercer cannot: prevent voters from voting, impersonate them,
or demand data not provided by the voting protocol.

1.2 Related Work

The first proposal for cast-as-intended verification based on visual cryp-
tography appears in Chaum’s work [5], followed by an idea of simulat-
able zero-knowledge proofs in Neff’s publication [19] the same year. In
both proposals, the vote-casting happens in a polling place, and both
cast-as-intended techniques require an additional trusted device (a spe-
cialized printer or randomness generator). A few years later, Benaloh [2]
suggested another idea - the cast-or-challenge mechanism, which allows
voters to verify multiple test ballots before finally casting the real one. It
started as a pulling place testing technique based on printed commitment
but quickly transformed into ballot casting assurance for remote voting
[1]. Nowadays, there are many more ways to ensure a ciphertext contains
the intended vote: OR proofs [10], return codes [14], tracking numbers
[23], QR codes [25], etc.

The first mention of uncoercibility and receipt-freeness goes back to
the election protocol designed by Benaloh and Tuinstra in 1994 [26]. A few
years later, the first definition of what is now known as coercion-resistance
was proposed [20]. The notion was called receipt-freeness; however, the co-
ercer could interact with the voter during the voting phase, which implies
adaptive corruption, in other words, coercion. The first widely accepted
formal definition of coercion-resistance appeared only in 2010 [13]. This
JCJ definition formalizes the idea of anonymous credentials and accounts
for vote-selling and forced-abstention attacks. Unfortunately, achieving
such a level of coercion-resistance in practice requires anonymous voting

channels and effectively excludes any form of cast-as-intended verification.
Interestingly, an almost unique scheme that satisfies this JCJ highly de-
manding notion of coercion-resistance scheme was found to leak too much
information in case of re-voting, and so not to be truly coercion-resistant
[6] - an attack first discovered as the “1009 attack” in [24]. Hence, the
notion was enhanced by adding a cleansing-hiding procedure. The list
of definitions of coercion-resistance is not limited to the JCJ derivations
only. There exist many different approaches that focus on various coercion
threats [4, 7, 9, 13, 16, 17, 26]. Unfortunately, they all struggle to capture
the broadness of possible coercion strategies [11, 15, 22].

To our knowledge, not many articles try to combine coercion-resistance
(not receipt-freeness) with any other property. We can mention: a study
about relations between privacy, verifiability, accountability and coercion-
resistance [21], a paper proposing to combine JCJ with Selene [12] and a
discussion regarding cast-as-intended coercion resistance in settings with-
out trusted delivery channels [8]. The solution in [12] inherits some of the
(good and bad) properties of JCJ: it can resist force-abstention attacks,
but the price to pay is that (i) the system must allow multiple voting, and
(ii) coercers can vote on behalf of voters (which means that some part of
the voting scheme is not properly authenticated).

Furthermore, all the papers mentioned in the last paragraph consider
settings where the voters have the capability to run expensive/complicated
(cryptographic) operations on their own. Regarding voting schemes for
computationally limited (also known as human) voters, the setting we
consider in this work, we can mention Neff’s proposal [19], a scheme by
Moran-Naor [18], Bingo voting [3] and other references therein. Authors
of Bingo voting show in [3] that many of the other protocols in this setting
can suffer from a specific coercion attack that they call “Babble attack”.
This fact leads to the idea that an external (and trusted) entity may be
necessary to choose random elements on behalf of voters; this approach is
taken by the Bingo voting protocol and also by the solution that we pro-
pose in this paper. We will discuss the similarities and differences between
our solution and Bingo voting in Section 4.2.

1.3 Contributions and Organization of the Paper

In this work, we discuss voters’ and coercer’s limitations and propose
definitions that, as we believe, capture both coercion-resistance and cast-
as-intended properties without requiring voters to do complex operations
(Section 2). The definitions are done using the standard cryptographic

language for provable security (experiments, games, challengers, adver-
saries); furthermore, even if their goal in this paper is to analyze the
security of a protocol for computationally limited voters, the definitions
are written in a so general way that they could be used to analyze the
cast-as-intended and coercion-resistance properties of other voting proto-
cols.

Section 3 contains our solution of coercion-resistant cast-as-intended
verification for a computationally limited voter and the proofs that it
fulfills the two above-mentioned definitions. Last, we give in Section 4 a
discussion on some practical aspects of our solution, a comparison be-
tween our solution and Bingo voting [3] and an intuitive argument on
why a trusted device seems necessary in order to achieve both coercion-
resistance and cast-as-intended verification in this setting of limited vot-
ers.

2 Definitions

We focus on a specific computationally limited voter V who wishes to
cast a vote for the intent m through a voting device VD, possibly under
the coercion of an adversary A that prefers another option m? 6= m. Let
Cpb denote the class of operations the voter V is supposed to be capable
of doing. In the restricted setting we consider in this paper, this class
contains: generating, memorizing, and comparing strings of numbers.

In such a setting, it makes perfect sense to consider the possibility that
V gets the help of another entity or device, that we call official election
device (OED for short), to execute some of the steps of the protocol. It
is trusted to run the prescribed steps of the protocol correctly, and its
actions are free from coercion.

We assume that the public election parameters pms include candi-
dates, questions, election rules, mathematical descriptions of the group, a
security parameter λ, hash functions, the public key pk of the encryption
scheme Enc for encrypting the votes, etc. To generate pms one would run
an initial protocol pms← Setup(λ).

The voting protocol itself is an interactive protocol between the voter
V and the voting device VD. We denote as Trc = (C,Trcpub,Trcpriv) the
result of the said interaction, where the ciphertext C encrypts (in princi-
ple) the voting option m chosen by V and the public trace Trcpub contains
other messages that will be made public in the bulletin board (proofs, sig-
natures, voter ID, etc.), along with C. The rest of voter’s (private) view
of the interaction with VD is denoted as Trcpriv.

We denote an execution of the voting protocol as:

Trc = (C,Trcpub,Trcpriv)← Vote〈V
OED,VD〉(pms,m,Cpb, coerc)

Here coerc refers to a possible set of instructions forced to the voter V
by a coercer; in case of no coercion, this variable is set to ∅. All instructions
the coercer gives should be within the voter’s capabilities; in other words,
the actions are restricted to the class Cpb.

In our setting, where the voter has limited computational capabilities,
it is clear that some part of the verification (which involves ciphertexts
and thus expensive cryptographic operations) must be done by an external
verifier. But of course, another part of the verification is done by the own
voter V.

The first (public) verification is done by anyone (with enough compu-
tational capabilities) by running a protocol

ValidProof(pms, C,Trcpub)→ {0, 1}

The second (private) verification is done by V by running the protocol
below, whose operations must belong to class Cpb:

ValidOption(pms, C,Trc,m,Cpb)→ {0, 1}

2.1 Cast-as-Intended Verifiability

Intuitively, this property must capture the impossibility that a dishon-
est voting device VD succeeds in cheating the voter V by completing an
accepted execution of the protocol Vote but in which the resulting cipher-
text (published in the bulletin board) encrypts something which is not
the voting option chosen by V.

The corresponding event Cheat is defined as follows:

Cheat =



pms← Setup(λ)

Vote〈V
OED,VD〉(pms,m,Cpb, ∅)→ (C,Trcpub,Trcpriv)

ValidProof(pms, C,Trcpub)→ 1// public validity

ValidOption(pms, C,Trc,m,Cpb)→ 1// private validity

m 6= Dec(C, sk)// but C does not contain the intent

Definition 1. The protocol Vote enjoys Cast-as-Intended (CAI) verifia-
bility if the probability of event Cheat is a negligible function of the security
parameter λ, for any polynomial-time voting device VD.

2.2 Coercion-Resistance

In our setting, a coercer A (e.g., a vote buyer) may interact with the
voter V before the vote-casting and force him to vote for some option m?

and to follow the instructions (belonging to the class Cpb) in coerc while
executing Vote. The strategy coerc must be such that it does not affect
the steps run by entity OED (which is assumed to be incoercible) and
such that it leads to accepted executions of the protocol Vote. That is, we
do not consider some very strong types of coercion: (1) the coercer forces
a voter not to participate in the election, (2) the coercer forces a voter to
misbehave during the interaction with VD, which results in VD aborting
the protocol and not sending any ciphertext to the ballot box.

During the execution of Vote, the adversary cannot see the interaction
between V and VD (otherwise, since the voting option is sent by V to
VD in clear, it would be impossible to achieve any meaningful coercion-
resistance property). However, the adversary has access to the ballot box
and can see the published values: the ciphertext C and the remaining
public data Trcpub. After the voting, A expects to receive from V the rest
of the voter’s view, Trcpriv, of the interaction.

To prevent coercion, the voter V must always be able to deceive the
coercer. In other words, it should be able to run the protocol Vote with
its voting option m and later simulate the view that would make A be-
lieve that Vote was run with m? as input. All this must be done with
the limited capabilities (in class Cpb) of the voter. We say the protocol
Vote has coercion-resistance whenever the coercer A cannot distinguish
between a result of voting for the coercer’s preference and a simulated
transcript hiding the disobedience with probability more than 1/2. The
formalization of this property is given in the following definition.

Definition 2. The protocol Vote enjoys coercion-resistance (CR) if for
any polynomial-time coercer A which chooses instructions coerc ∈ Cpb
that do not affect the steps run by OED, there exists a simulator Sim ∈ Cpb
such that, in the experiment described below,

∣∣Pr[b′ = b]− 1
2

∣∣ is a negligible
function of the security parameter λ:

1. pms← Setup(λ).
2. b← {0, 1} is chosen uniformly at random.
3. A(pms)→ (coerc,m?,m).

4. Trc(0) =
(
C?,Trc?pub,Trc

?
priv

)
← Vote〈V

OED,VD〉(pms,m?,Cpb, coerc)
// obey the coercer and vote for m?

If ValidProof(pms, C?,Trc?pub) → 0, abort // happens only if instruc-
tions coerc invalidate the ballot

5. Trc = (C,Trcpub,Trcpriv) ← Vote〈V
OED,VD〉(pms,m,Cpb, ∅) // disobey

the coercer and vote for m
6. TrcSimpriv ← Sim(Trc,m?,Cpb) // fake the voter’s view

Set Trc(1) = (C,Trcpub,Trc
Sim
priv)

7. b′ ← A(pms,Trc(b),Cpb).

3 A Construction for Limited Voters

In this section, we explore possibilities for providing coercion-resistant
cast-as-intended verification to voters with (very) limited capabilities,
namely those who can only generate, remember and compare strings of
numbers.

We propose and analyze a simple protocol where the voter needs the
help of an external device OED for string generation. The OED is expected
to participate in the protocol honestly and only when the voter indicates
(and not a moment before).

The idea of our solution is as follows: the voter V chooses one of the `
possible voting options mj ∈ {m1,m2, . . . ,m`} and sends it to the voting
device VD, which encrypts the selected option into a ciphertext C. Along
with C, the voting device VD will generate a non-interactive OR zero-
knowledge proof of knowledge of the randomness r such that C is the
encryption of some valid voting option in {m1,m2, . . . ,m`}.

To prevent a dishonest voting device from cheating the voter by en-
crypting a different voting option m∗ 6= mj , the zero-knowledge proof
must be computed in stages: first, the voting device will show the voter
some values (to be memorized), then the voter will press the button gen-
erating “Nonce”, and only then the voting device will be able to finish
the computation of the zero-knowledge proof, by using the correspond-
ing nonce (selected by an official election device) as an input of the hash
function.

Once the final proof is published, anybody (with enough computa-
tional resources) can verify the validity of the OR proof and ensure that
a ciphertext contains a valid selection. However, only the voter can ensure
that the proof is consistent with the memorized values, which implies that
the ciphertext encrypts the desired choice.

The simplicity of the construction allows us to analyze its coercion-
resistance and cast-as-intended properties according to our definitions.
The intuition says that privacy only requires that the voting device does
not leak the intent to the adversary - as all client-side encryption vot-
ing schemes. Similarly, coercion-resistance holds because voters’ secret is

something they saw rather than any secret key or value. Cast-as-intended
property is ensured due to the soundness of OR proof and randomness of
the “Nonce” provided by OED.

3.1 The Protocol (for ElGamal Ciphertexts)

Let us detail the protocol that we obtain if we use the ElGamal public
key encryption scheme: public election parameters of the election system
must contain elements q,G, g such that G = 〈g〉 = 〈h〉 has prime order
q and two collision-resistant hash functions H : {0, 1}∗ → Zq and Ĥ :
{0, 1}∗ → X , where X is the space of strings the voter can type and
memorize. The public key of the election is y ∈ 〈g〉. The set X is a set
with enough entropy to avoid brute force attacks.
1. V chooses a voting option mj from the set {m1,m2, . . . ,m`} and sends

the selected index j ∈ {1, 2, . . . , `} to VD.
2. VD encrypts mj using ElGamal encryption protocol:

C = (c1, c2) = (gr,mj · yr), for some random and uniform r ∈ Zq.
Now VD starts the computation of the OR proof as follows:
(a) choose tj ∈ Zq uniformly at random;
(b) compute commitments Aj = gtj , Bj = ytj ;
(c) for each i ∈ {1, 2, . . . , `}, i 6= j:

i. choose values zj , ej ∈ Zq uniformly at random;

ii. compute Ai = gzi · (c1)−ei and Bi = yzi ·
(

c2
mi

)−ei
.

VD sends to V the value Xj = Ĥ(C, {(As, Bs)}1≤s≤`, {ei}1≤i≤`,i 6=j), to
be memorized by V.

3. At this point, V presses the “Nonce” button, which makes the official
election device OED choose a random nonce ncV ∈ X and publish
(V, ncV) in the official public board of the election. If the publication
of (V, ncV) is done in any other moment (for instance, by a coerced
voter, before Step 2), the voting device VD aborts the execution.

4. Now VD can finish the OR proof:
(a) computes e = H(C, {(Ak, Bk)}1≤k≤`, ncV);
(b) sets ej = e−

∑
1≤i≤`,i 6=j

ei mod q;

(c) finalizes the proof zj = tj + ej · r mod q.
Finally VD makes public the ciphertext C, the OR zero-knowledge
proof π = (V, ncV , {(Ak, Bk, ek, zk)}1≤k≤`) and the list of couples
{(mk, X̂k)}k∈{1,2,...,`}, where X̂k = Ĥ(C, {(As, Bs)}1≤s≤`, {ei}1≤i≤`,i 6=k).
Following the notation of Section 2, in our protocol we have:

Trcpub = (π, {(mk, X̂k)}k∈{1,2,...,`})

Trcpriv = (mj , {(mi, Xi)}i∈{1,2,...,`},i 6=j)

Private and Public Verifications. The voter V will accept the interaction
if X̂j = Xj , for its chosen option mj .

For the public verification, anybody with enough computational re-
sources can first check that the initial couple (V, ncV) in π exists in the
official public board of the election, and then ensure that all checks hold:
(i) H(C, {(Ak, Bk)}1≤k≤`, ncV) =

∑
1≤k≤`

ek mod q,

(ii) for each k ∈ {1, 2, . . . , `}, gzk = Ak · (c1)ek ,

(iii) for each k ∈ {1, 2, . . . , `}, yzk = Bk ·
(

c2
mk

)ek
,

(iv) for each k ∈ {1, 2, . . . , `}, X̂k = Ĥ(C, {(As, Bs)}1≤s≤`, {ei}1≤i≤`,i 6=k)
We discuss how the outputs of these verification protocols affect the

election in case of a dishonest behaviour of the voting device VD in Section
4.1.

3.2 Cast-as-Intended Verifiability of the Proposed Protocol

We prove that the protocol described in the previous section achieves cast-
as-intended verifiability by using the rewinds. We assume a (dishonest)
voting device VD can break cast-as-intended verifiability. In other words,
it makes the event Cheat happen with a non-negligible probability. Then,
we run Vote protocol without changes until step 3, where we make a fork
and send two different nonces ncV 6= nc′V to VD. Since we assumed that
event Cheat happens with a non-negligible probability, VD should be able
to finish the two executions successfully and produce accepted proofs π
and π′.

In the two executions, since the first two steps are identical and the
hash function Ĥ is collision-resistant, we have that many values in π and
π′ are equal: mj , C = (c1, c2), {(As, Bs)}1≤s≤`, {ei}i∈{1,2,...,`},i 6=j .

But since the two nonces are different, we have with overwhelming
probability ej 6= e′j as:

e = H(C, {(Ak, Bk)}1≤k≤`, ncV) 6= H(C, {(Ak, Bk)}1≤k≤`, nc′V) = e′

Now dividing the two satisfied equations gzj = Aj · (c1)ej and gz
′
j =

Aj · (c1)e
′
j we get c1 = g

zj−z′j
ej−e′

j on the one hand.
On the other hand, dividing the two satisfied equations yzj = Bj ·(

c2
mj

)ej
and yz

′
j = Bj ·

(
c2
mj

)e′j
we get c2 = mj · y

zj−z′j
ej−e′

j .

Therefore, we have C = (c1, c2) = (grj ,mj ·yrj) for rj =
zj−z′j
ej−e′j

mod q,

which means C is an encryption of the voting option mj . This contradicts
the fact that event Cheat was happening.

3.3 Coercion-Resistance of the Proposed Protocol

Coercion resistance is easier to argue. The voter’s role in the protocol
is limited - only choosing the intended voting option and pressing the
“Nonce” button. Hence, the coercer A cannot enforce an elaborate voting
strategy. The only possible instruction A can force voters to follow would
be to vote for some option m?.

Theoretically, a coercer can force the voter to press the button at
the wrong moment or not press it at all, but this would lead to a non-
successful execution of the protocol, which our coercion-resistance def-
inition does not take into account. Similarly, our notion of coercion-
resistance does not cover coercion strategies that require the voter to
repeat vote-casting multiple times until some arbitrary condition regard-
ing the output is satisfied (e.g., the ciphertext starts with 42).

Assume the coercer’s goal is to make the voter vote for some option
m? = mw, for some w ∈ {1, 2, . . . , `}, likely different to the voting option
m = mj that the voter wants to choose. But in this case, all that the voter
(or strictly speaking, the simulator Sim) has to do to deceive the coercer
A is to say it received value X̂w (instead of X̂j) from VD in Step 2. In
terminology of Definition 2, the simulated private trace TrcSimpriv can be ob-
tained from Trcpriv by replacing m = mj with m? = mw and by replacing

X̂j with X̂w. Note that all required information is available to Sim, which
has the whole trace Trc and m? = mw as inputs. Moreover, such replacing
operations performed by Sim clearly belong to the considered class Cpb,
as required.

4 Discussion and Conclusions

4.1 Practical Considerations

We assume that the final output of the protocol, computed by the voting
device VD, is published immediately in the official public board of the
election, which can be checked by the voter in order to run its individual
verification. If this verification fails, the voter should complain and can-
cel the execution of the voting phase; otherwise, the voter should press
a button to confirm the vote. With respect to public verification, some

users/devices selected by the election will run it: only those ciphertexts
corresponding to executions of the voting phase where the voter has con-
firmed and where public verification is valid will be moved to the ballot
box for the tally phase.

In case a voter cancels the execution, the election should specify if the
voter can start the voting phase again, with the same (or another) voting
device.

4.2 Comparison with Bingo Voting: on the Necessity of OED

As we have commented in the introduction, our protocol is similar in
spirit to Bingo voting [3]: both schemes consider computationally limited
voters, and both solutions use a trusted external entity to generate a
(pseudo-)random nonce. We think our solution improves Bingo voting
in two aspects. First, the pre-voting phase in the Bingo scheme is quite
expensive as it requires choseing and committing to many dummy values.
In our protocol, there is no pre-voting phase, only the publication of the
public parameters of the election. Second, in the Bingo voting, a pseudo-
random nonce must be sent to the voter and the voting device VD through
a secure channel because the privacy of the voting phase would be lost if
this value was leaked during that execution. In our solution, the random
nonce ncV ∈ X can be (and is) made public by the official election device
OED right at the moment of its generation. Therefore, our solution does
not need a secure channel between the external trusted entity and the
voters.

At this point, one may wonder if the help of an external trusted entity
(the official election device OED in our protocol) is necessary. All in all, its
only task is to generate and publish a random nonce ncV ∈ X , something
that even our limited voter V could do on its own: if we assume V can
memorize and compare some strings of numbers, then for sure it would
be able to generate a random string of numbers, as well.

But if we modify our protocol in such a way that OED disappears and
Step 3 is run by the voter V, the result is a protocol that is not coercion-
resistant: a coercer who wants V to vote for an option m? = mw can ask
the voter V to use as the nonce n̂cV a value which is computed determin-
istically from the value Xw = Ĥ(C, {(As, Bs)}1≤s≤`, {ei}1≤i≤`,i 6=w). For
instance, to use as n̂cV the first digits of Xw. The voter V cannot vote
for another option j 6= w, because in such a case, V would get to know
the value of X̂w (needed to compute n̂cV) only in Step 4 of the protocol,
whereas the value of the nonce must be sent by V in Step 3.

We actually have the intuition (not formally proved) that the par-
ticipation of an external entity is necessary to achieve both coercion-
resistance and cast-as-intended verification in the considered setting with
limited voters. The intuitive argument is as follows. At some step of the
interaction, say J , between voter V and voting device VD, voter has to
communicate its chosen voting option mj to VD.

On the one hand, if the voter does not send any random values to
VD, or if all the random elements are sent to VD before the step J , then
a malicious VD can break the cast-as-intended verification property, by
running the fist steps ≤ J for another voting option mi 6= mj and then
permuting the roles of indices i and j in the rest of steps of the protocol.

On the other hand, if the voter sends some random value rnd to VD
after the voting device VD has computed and sent to V some information
infoj which depends on the voting option mj , a coercer can force the voter
to use as rnd a function f of infoj (for instance, the first bits of it). If such
coercion can be avoided by simulating execution of the voting phase for
another option, but following this pattern rnd = f(infoj), it seems (and
this is the part that we have not been able to prove formally) that such
a simulator breaks the cast-as-intended property.

This intuitive argument supports the claims made by the authors
of Bingo voting: “... which strongly suggest that the voter should not
be trusted to contribute her own randomness. This gives an additional
motivation for the use of trusted random number generator”. A formal
and complete proof of the impossibility of achieving coercion-resistance
and cast-as-intended verification in the limited voters setting remains an
interesting open problem.

Acknowledgements

This work is partially supported by the Spanish Ministerio de Ciencia
e Innovación (MICINN), under Project PID2019-109379RB-I00, and by
Generalitat de Catalunya, under Project 2018 DI 038.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Proceedings of the 17th
USENIX Security Symposium, pages 335–348, 2008.

2. Josh Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In
Proceedings of the USENIX Workshop on Accurate Electronic Voting Technology,
EVT’07, page 14, USA, 2007. USENIX Association.

3. Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo voting: Se-
cure and coercion-free voting using a trusted random number generator. In Ammar
Alkassar and Melanie Volkamer, editors, E-Voting and Identity, First International
Conference, VOTE-ID 2007, Bochum, Germany, October 4-5, 2007, Revised Se-
lected Papers, volume 4896 of Lecture Notes in Computer Science, pages 111–124.
Springer, 2007.

4. R Canetti and R Gennaro. Incoercible multiparty computation. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 504–513. IEEE Computer Society, November
1996.

5. David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security
& Privacy Magazine, 2:38–47, 2004.

6. Véronique Cortier, Pierrick Gaudry, and Quentin Yang. Is the JCJ voting system
really coercion-resistant? working paper or preprint, April 2022.

7. S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance and receipt-freeness
in electronic voting. In 19th IEEE Computer Security Foundations Workshop
(CSFW’06), pages 12–42, 2006.

8. Tamara Finogina, Javier Herranz, and Enrique Larraia. How (not) to achieve
both coercion resistance and cast as intended verifiability in remote evoting. In
Cryptology and Network Security, pages 483–491, 2021.

9. Ryan W. Gardner, Sujata Garera, and Aviel D. Rubin. Coercion resistant end-to-
end voting. In Roger Dingledine and Philippe Golle, editors, Financial Cryptog-
raphy and Data Security, pages 344–361, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

10. Sandra Guasch and Paz Morillo. How to challenge and cast your e-vote. In Jens
Grossklags and Bart Preneel, editors, Financial Cryptography and Data Security,
pages 130–145, 2017.

11. Thomas Haines and Ben Smyth. Surveying definitions of coercion resistance. Cryp-
tology ePrint Archive, Report 2019/822, 2019. https://ia.cr/2019/822.

12. Vincenzo Iovino, Alfredo Rial, Peter B. Rønne, and Peter Y. A. Ryan. Using selene
to verify your vote in JCJ. In Michael Brenner, Kurt Rohloff, Joseph Bonneau,
Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano
Sala, Federico Pintore, and Markus Jakobsson, editors, Financial Cryptography and
Data Security - FC 2017 International Workshops, WAHC, BITCOIN, VOTING,
WTSC, and TA, Sliema, Malta, April 7, 2017, Revised Selected Papers, volume
10323 of Lecture Notes in Computer Science, pages 385–403. Springer, 2017.

13. Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic
elections. In Towards Trustworthy Elections, New Directions in Electronic Voting,
pages 37–63, 2010.

14. Shahram Khazaei and Douglas Wikström. Return code schemes for electronic vot-
ing systems. In Robert Krimmer, Melanie Volkamer, Nadja Braun Binder, Nor-
bert Kersting, Olivier Pereira, and Carsten Schürmann, editors, Electronic Voting
- Second International Joint Conference, E-Vote-ID 2017, Bregenz, Austria, Octo-
ber 24-27, 2017, Proceedings, volume 10615 of Lecture Notes in Computer Science,
pages 198–209. Springer, 2017.

15. Kristjan Krips and Jan Willemson. On practical aspects of coercion-resistant
remote voting systems. In Electronic Voting - 4th International Joint Conference,
E-Vote-ID 2019, Bregenz, Austria, October 1-4, 2019, Proceedings, volume 11759
of Lecture Notes in Computer Science, pages 216–232, 2019.

16. Ralf Küsters, Tomasz Truderung, and Andreas Vogt. A game-based definition of
coercion-resistance and its applications. In 2010 23rd IEEE Computer Security
Foundations Symposium, pages 122–136, 2010.

17. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlast-
ing privacy. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006,
pages 373–392, 2006.

18. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with ever-
lasting privacy. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO
2006, 26th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 20-24, 2006, Proceedings, volume 4117 of Lecture Notes in Com-
puter Science, pages 373–392. Springer, 2006.

19. C. Andrew Neff. Practical high certainty intent verification for encrypted votes,
2004.

20. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Security Protocols Workshop, 1997.

21. Alisa Pankova and Jan Willemson. Relations between privacy, verifiability,
accountability and coercion-resistance in voting protocols. Cryptology ePrint
Archive, Report 2021/1501, 2021. https://ia.cr/2021/1501.

22. Stanislas Riou, Oksana Kulyk, and David Marcos del Blanco. A formal approach
to coercion resistance and its application to e-voting. Mathematics, 10, 02 2022.

23. Peter Ryan, Peter Rønne, and Vincenzo Iovino. Selene: Voting with transparent
verifiability and coercion-mitigation. In Financial Cryptography and Data Security
- FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ
Church, Barbados, February 26, 2016, Revised Selected Papers, volume 9604 of
Lecture Notes in Computer Science, pages 176–192, 02 2016.

24. Warren D. Smith. New cryptographic election protocol with best-known
theoretical properties. Workshop on Frontiers in Electronic Election, 2005.
https://users.encs.concordia.ca/ clark/biblio/coercion/Smith%202005-1.pdf.

25. Alexander H. Trechsel and Kristjan Vassil. Internet voting in estonia : a com-
parative analysis of four elections since 2005 : report for the council of europe.
2010.

26. Dwight Tuinstra and Josh Benaloh. Receipt-free secret-ballot elections. In STOC
’94 Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Com-
puting, pages 544–553. Association for Computing Machinery, Inc., May 1994.

